Базовые данные
Точный теплотехнический расчет довольно сложен, и его делают специалисты при проектировании системы отопления. Если заказать его проблематично, то простой расчет можно сделать самостоятельно.
Для его выполнения необходимо иметь базовую информацию:
- Изначально нужно знать размеры помещения, где будут устанавливаться радиаторы отопления:
- Длину.
- Ширину.
- Высоту.
- Затем нужно определиться с выбором батарей:
- стальные пластинчатые;
- чугунные;
- биметаллические;
- алюминиевые.
- В технической документации на каждый радиатор в характеристиках от завода-изготовителя значится тепловая мощность прибора. Это то количество тепла в ваттах, которое может выделить 1 модульный элемент секции за 1 час.
Для справки — один ватт равнозначен 0,86 калорий тепла.
- Чтобы рассчитать мощность радиаторов, необходимо воспользоваться нормативными значениями теплоотдачи каждой секции, а именно:
- Для чугунных батарей советского производства — 160 Вт.
- Алюминиевых с межосевой высотой в 500 мм — 200 Вт.
- Стальных панельных неразборных при длине 500 и 800 мм соответственно 700 и 1500 Вт.
Показатели, влияющие на расчёт количества секций
Подбирая радиатор для того или иного помещения, нужно учитывать технические особенности. К примеру, расчёт будет разным для угловой и не угловой комнаты, для помещения с разной высотой потолка и разным размером окон и т.д. Наиболее важные параметры, которые учитывают, определяя необходимую мощность радиатора, это:
- площадь вашего помещения;
- этаж;
- высота потолка (выше или ниже трёх метров);
- расположение (угловое или не угловое помещение, комната в частном доме);.
- будет ли батарея отопления основным отопительным прибором;
- есть в комнате камин, кондиционер.
Чугунные радиаторы Коннер (Китай)
Согласно СНИП на 1 кубометр помещения необходимо 41 Вт тепловой энергии. Учитывать можно и не объём, а площадь комнаты. На 10 кв.м стандартного помещения с одной дверью и одним окном, одной дверью и наружной стеной понадобится следующая тепловая мощность радиатора:
- 1 кВт для помещения с одним окном и наружной стеной;
- 1,2 кВт если в нём одно окно и две наружные стены (угловое помещение);
- 1,3 кВт для угловых помещений с двумя окнами.
Реально же один киловатт тепловой энергии обогревает:
- В помещениях домов из кирпича с толщиной стены в полтора-два кирпича, или из бруса и срубных домах (площадь окон и дверей до 15%; утепление стен, крыши и чердака) – 20-25 кв. м
- В угловых помещениях со стенами из бруса или кирпича не менее чем в один кирпич (площадь окон, дверей до 25% ; утепление) – 14-18 кв. м
- В помещениях панельных домов с внутренней облицовкой и теплоизолированной крышей (а также в комнатах утеплённой дачи) – 8-12 кв. м
- В «жилом вагончике» (деревянный или панельный домик с минимальным утеплением) – 5-7 кв. м.
https://youtube.com/watch?v=GKFWdJVz4BE
Подготовительные мероприятия
Они предполагают очистку поверхности батареи от старой краски и грязи:
Тщательно вытирают пыль влажной тряпкой так, чтобы в выемках не осталась грязь. Для очистки труднодоступных мест, тряпку помещают между ребрами и двигают ею взад-вперед.
- Удаляют слой старой краски. Когда используют химический способ, задействуют средства Dufa, СП-6, Б52, АСЕ, но они не способны справиться с масляными составами, которые выпускались в середине 20-го века. Физический метод требует применения дрели, на которой закреплена металлическая щетка. Также можно воспользоваться напильником и наждачной бумагой.
- Наносят слой грунтовочной смеси. Она должна не только выдерживать повышенную температуру, но и соответствовать типу краски, хорошо, если они будут одинаковой марки.
Красоту отопительного устройства можно легко вернуть, окрасив поверхность чугунной батареи.
В самом начале нужно выяснить, сколько грунтующего раствора и краски нужно использовать для покраски батареи. Это можно узнать, вычислив площадь радиатора отопления. Далее смотрят на рекомендации, указанные на банке с краской. В них всегда указывается, сколько краски может пойти на 1 кв. м. Производители указывают площадь поверхности нагрева секции.
Чтобы определить общую площадь поверхности чугунной батареи, необходимо:
- Узнать название модели установленной батареи и производителя ( потому, что секции, выпущенных производителями одних и тех же моделей, имеют разную глубину и ширину).
- Установить площадь нагрева 1 ребра.
- Умножить количество секций на площадь. Если в радиаторе МС-140-500 10 ребер, то площадь поверхности – 2,44 кв. м.
Сделав расчет, определяют количество состава и грунтовки. Краску следует брать с запасом.
Они предусматривают очистку поверхности от грязи и старой краски. Подготовка происходит следующим образом:
Избавляются от старого слоя краски. Это можно сделать химическим или физическим способом. Первый предполагает использование растворов Dufa, Б52, СП-6, АСЕ. Они бессильны против масляных составов, сделанных в 50-х годах ХХ века. Физический способ заключается в использовании дрели с закрепленной на ней металлической щеткой. Можно использовать наждачную бумагу и напильник. Если использовались химические вещества, то чугун придется зачистить металлической щеткой, насаженной на дрель. Ржавые места обрабатывают наждачной бумагой.
Наносят слой грунтовки. Она должна выдерживать высокие температуры и соответствовать типу краски. Лучше, если марка обоих будет одинаковой.
Ее можно проводить любым типом состава, но при одном условии: раствор должен быть устойчив к высокой температуре.
Процесс окрашивания таков:
- Гибкой кистью обновляют вид труднодоступных мест (они находятся между трубами секций). В некоторых частях кисть не коснется чугуна. Использовать можно марлю, сложенную в жгут. Ее помещают между секциями, на середину наносят краску и далее по очереди тянут за концы. Так краска ляжет на сплав.
- Красят верх и легкодоступные места.
- Всегда движутся сверху вниз. Лучше краску наносить несколькими слоями.
Информация
При строительстве или ремонте жилого помещения важнейшим вопросом является его обогрев. Расчет эффективной системы отопления – ответственная задача для строителя-теплотехника. Однако, можно самостоятельно сделать расчет радиаторов отопления по площади помещения с помощью онлайн калькулятора. Необходимо только ввести известные данные в программу.
Функции калькулятора
Калькулятор для расчета радиаторов отопления на квадратный метр или по мощности секций является онлайн программой и состоит из:
- блока окон «Вид радиатора»;
- десяти строк ввода данных;
- блока окон «Тип подключения»;
- четырех строк с выводом готовых расчетов.
Программа произведет расчет количества секций радиаторов отопления; тепловых потерь помещения; удельных теплопотерь помещения; количества тепла, выделяемого одной секцией. Всю полученную информацию можно сохранить в файле PDF или вывести на печать.
Принцип работы на калькуляторе
Для получения готовых расчетов следуйте нижеуказанному алгоритму:
Выберете необходимый вид радиатора. В строке ниже автоматически появится мощность одной секции выбранного вида радиатора, в ваттах.
В строках 2-4 укажите размеры комнаты: длину, ширину, высоту в метрах.
Выберете качество остекления.
Выберете площадь остекления (равна отношению площади окна к площади помещения), в %.
Укажите степень утепления.
Выберете климатическую зону – регион проживания.
Укажите количество внешних углов и стен комнаты.
Выберете вариант помещения, которое находится над комнатой.
Укажите температуру теплоносителя, в ℃
Это очень важно, например центральное отопление дает 70-80 градусов, а котел на твердом топливе если есть дома тёплый пол настраивают на 50-60
Выберете планируемый тип подключения.
После этого появится следующая информация:
- Количество секций, в штуках.
- Тепловые потери помещения, в ваттах.
- Удельные теплопотери помещения, в Вт/м2.
- Количество тепла, выделяемого 1 секцией, в ваттах.
Полезная информация
Важнейшими техническими характеристиками различных моделей радиаторов отопления являются:
- Мощность секций радиатора. Чем больше мощность радиатора, тем выше теплоотдача и эффективность отопительного прибора.
- Рабочее давление радиатора. Высокий порог данного параметра позволяет выдерживать гидравлические удары и перепады давления в системе, увеличивает срок службы изделия.
- Материал и вес радиатора. Вид материала (металла, сплава) напрямую влияет на прочность и долговечность отопительного прибора, его коррозионную стойкость. Вес изделия важен при монтаже, особенно, если устанавливать радиаторы будет один человек.
На рынке радиаторов отопления присутствуют четыре основных вида: стальные, чугунные, алюминиевые и биметаллические радиаторы.
Стальные радиаторы – имеют хорошую теплоотдачу и относительно невысокую стоимость. Однако, они не достаточно устойчивы к гидроударам и высокому давлению, подвержены коррозии. Различают панельные и трубчатые радиаторы из стали.
Чугунные радиаторы – самый популярный и долговечный вид радиаторов в России для централизованного отопления. Обладают отличной теплоотдачей, стойкостью к коррозии и гидроударам. В то же время, радиаторы из чугуна долго нагреваются и долго остывают; имеют большой вес, что является недостатком при монтаже одним специалистом.
Алюминиевые радиаторы – одни из самых популярных современных видов радиаторов. Изготавливают литые и экструзионные радиаторы из алюминия
Отличаются высокой теплоотдачей и небольшим весом, что важно при установке приборов. При этом, они чувствительны к гидроударам и перепадам давления в системе отопления, быстро нагреваются и быстро остывают. Биметаллические радиаторы – обладают относительно лучшими характеристиками среди всех видов радиаторов
Изготавливаются из двух материалов: внешней алюминиевой оболочки и внутренних стальных или медных труб. Обладают высокой теплоотдачей и прочностью, хорошей стойкостью к коррозии и гидроударам, имеют сравнительно небольшой вес
Биметаллические радиаторы – обладают относительно лучшими характеристиками среди всех видов радиаторов. Изготавливаются из двух материалов: внешней алюминиевой оболочки и внутренних стальных или медных труб. Обладают высокой теплоотдачей и прочностью, хорошей стойкостью к коррозии и гидроударам, имеют сравнительно небольшой вес.
Справка
Радиатор отопления – отопительный прибор, конструктивно состоящий из отдельных элементов трубчатого или вытянутого вида – секций, с внутренними каналами, по которым циркулирует теплоноситель, как правило, вода. Тепло от радиатора отопления отводится конвекцией, излучением и теплопроводностью.
Как рассчитать количество секций радиатора отопления
Чтобы теплоотдача и нагревательная эффективность была должного уровня, при расчете размера радиаторов нужно учесть нормативы их установки, а отнюдь не опираться на размеры оконных проемов, под которыми они устанавливаются.
На теплоотдачу влияет не ее размер, а мощность каждой отдельной секции, которые собраны в один радиатор. Поэтому лучшим вариантом будет разместить несколько небольших батарей, распределив их по комнате, нежели одну большую. Это можно объяснить тем, что тепло будет поступать в помещение из разных точек и равномерно прогревать его.
Каждое отдельное помещение имеет свою площадь и объем, от этих параметров и будет зависеть расчет количества секций, устанавливаемых в нем.
Расчет на основании площади помещения
Чтобы правильно рассчитать это количество на определенную комнату, нужно знать некоторые правила:
Узнать нужную мощность для обогрева помещения можно, умножив на 100 Вт размер его площади (в квадратных метрах), при этом:
- На 20% увеличивают мощность радиатора в том случае, если две стены помещения выходят на улицу, и в нем находится одно окно — это может быть торцевая комната.
- На 30% придется увеличить мощность, если комната имеет те же характеристики, как в предыдущем случае, но в ней устроено два окна.
- Если же окно или окна комнаты выходят на северо-восток или север, а значит, в ней бывает минимальное количество солнечного света, мощность нужно увеличить еще на 10%.
- Устанавливаемый радиатор в нишу под окном, имеет сниженную теплоотдачу, в этом случае придется увеличить мощность еще на 5%.
Ниша снизит энергоотдачу радиатора на 5 %
Если радиатор закрывается экраном в эстетических целях, то снижается теплоотдача на 15%, и ее также нужно восполнить, увеличив мощность на эту величину.
Экраны на радиаторах — это красиво, но они заберут до 15% мощности
Удельная мощность секции радиатора обязательно указывается в паспорте, который производитель прилагает к изделию.
Зная эти требования, можно рассчитать необходимое количество секций, разделив полученное суммарное значение требуемой тепловой мощности с учетом всех указанных компенсирующих поправок, на удельную теплоотдачу одной секции батареи.
Полученный результат расчетов округляется до целого числа, но только в большую сторону. Допустим, получилось восемь секций. И тут, возвращаясь к вышесказанному, нужно отметить, что для лучшего обогрева и распределения тепла, радиатор можно разделить на две части, по четыре секции каждая, которые устанавливают в разных местах помещения.
Каждое помещение просчитывается отдельно
Нужно отметить, что такие расчеты подходят для определения количества секций для помещений, оснащенных центральным отоплением, теплоноситель в котором имеет температуру не больше 70 градусов.
Этот расчет считается достаточно точным, но можно произвести расчет и по-другому.
Расчет количества секций в радиаторах, исходя из объема помещения
Стандартом считается соотношение тепловой мощности в 41 Вт на 1 куб. метр объема помещения, при условии нахождения в нем одной двери, окна и внешней стены.
Чтобы результат был виден наглядно, для примера можно рассчитать нужное количество батарей для комнаты площадью 16 кв. м.и потолком, высотой 2,5 метра:
16 × 2,5= 40 куб.м.
Далее нужно найти значение тепловой мощности, это делается следующим образом
41 × 40=1640 Вт.
Зная теплоотдачу одной секции (ее указывают в паспорте), можно без труда определить количество батарей. Например, теплоотдача равна 170 Вт, и идет следующий расчет:
1640 / 170 = 9,6.
После округления получается цифра 10 — это и будет нужное количество секций отопительных элементов на комнату.
Существуют также некоторые особенности:
- Если комната соединяется с соседним помещением проемом, не имеющим двери, то необходимо считать общую площадь двух комнат, только тогда будет выявлена точное количество батарей для эффективности отопления.
- Если теплоноситель имеет температуру ниже 70 градусов, количество секций в батареи придется пропорционально увеличить.
- При установленных в комнате стеклопакетах, значительно снижаются тепловые потери, поэтому и количество секций в каждом радиаторе может быть меньше.
- Если в помещениях установлены старые чугунные батареи, которые вполне справлялись с созданием нужного микроклимата, но есть планы поменять их на какие-то современные, то посчитать, сколько их понадобится, будет очень просто.Одна чугунная секция имеет постоянную теплоотдачу в 150 Вт. Поэтому количество установленных чугунных секций нужно умножить на 150, а полученное число делится на теплоотдачу, указанную на секции новых батарей.
Куда исчезает тепло
Любые строительные материалы обладают теплопроводностью, то есть способностью передавать тепловую энергию. Если наружная температура значительно ниже, чем в помещении, то стены, окна, крыша и другие элементы начинают передавать тепловую энергию, охлаждая внутреннее пространство комнаты и нагревая воздух вокруг дома. Существуют различные таблицы и документы, которые описывают, сколько тепла уходит через те или другие материалы. Данные из этих таблиц используют для определения теплопотерь здания.
При этом учитывают толщину и структуру стен, потолка, пола или крыши, стройматериал из которого они изготовлены, наличие щелей и другие факторы. Такой расчет отличается высокой сложностью, поэтому качественно выполнить его может лишь квалифицированный инженер. Если же не выполнить этот расчет, то с вероятностью 33% выбранный радиатор окажется или недостаточно мощным или наоборот, излишне мощным и поэтому более дорогим. Расчет количества секций радиаторов отопления калькулятор проводит в автоматическом режиме, ведь ему доступны все таблицы, по которым и определяют теплопотери дома.
Теплопотери дома
Преимущества биметаллических радиаторов отопления
Ни для кого не секрет, что радиаторы отопления биметаллические размеры которых являются вполне компактными и удобными для установки – это одни из лучших приборов, позволяющих оборудовать качественную и вместе с тем экономную отопительную систему.
Главными достоинствами таких изделий выступают следующие:
- Длительный срок службы. Указать конкретный эксплуатационный срок этих радиаторов довольно проблематично, однако практически все производители дают гарантию качества сроком на 20 лет, что весьма не мало.
- Мощность биметаллических радиаторов отопления. Если сравнивать подобные изделия, например, с образцами, изготовленными из алюминия, стоит отметить, что лишь некоторые алюминиевые обогреватели способны обеспечить ту же мощность, которой обладают радиаторы из биметалла. Ввиду этого более простым является и расчет биметаллических радиаторов отопления.
- Высокие эстетические свойства. Такие батареи прекрасно впишутся в помещение с абсолютно любым интерьером, не нарушая его дизайн. Более того, размеры биметаллических радиаторов способствуют тому, что оборудование не займет много места и не станет причинять неудобства хозяевам.
Все эти преимущества способствуют тому, что эти отопительные аппараты получили широкую популярность среди потребителей и на сегодняшний день являются едва ли не самыми распространенными приборами отопления. Но недостаток у этих механизмов все же имеется – это их стоимость. Биметаллические образцы радиаторов стоят значительно дороже аналогов, выполненных из других, более простых материалов
Именно поэтому важно учитывать не только размер секции биметаллического радиатора, но и количество этих сегментов в оборудовании, чтобы избавить себя от необходимости переплачивать значительную часть финансовых средств. О том, как рассчитать биметаллические радиаторы отопления в соответствии с количеством их секций, следует рассказать более подробно (прочитайте: «Как рассчитать количество радиаторов отопления правильно, формула расчета «)
Пример расчета мощности батарей отопления
Возьмем помещение площадью 15 квадратных метров и с потолками высотой 3 метра.Объем воздуха, который предстоит нагреть в отопительной системе составит:
V=15×3=45 метров кубических
Далее считаем мощность, которая потребуется для обогрева помещения заданного объема. В нашем случае — 45 кубических метров. Для этого необходимо умножить объем помещения на мощность, необходимую для обогрева одного кубического метра воздуха в заданном регионе. Для Азии, Кавказа это 45 вт, для средней полосы 50 вт, для севера около 60 вт. В качестве примера возьмем мощность 45 вт и тогда получим:
45×45=2025 вт — мощность, необходимая для обогрева помещения с кубатурой 45 метров
Нормы теплоотдачи для отопления помещения
Согласно практике для отопления помещения с высотой потолка не превышающей 3 метра, одной наружной стеной и одним окном, достаточно 1 кВт тепла на каждые 10 квадратных метров площади.
Для более точного расчета теплоотдачи радиаторов отопления необходимо сделать поправку на климатическую зону, в которой находится дом: для северных районов для комфортного отопления 10 м2 помещения необходимо 1,4-1,6 кВт мощности; для южных районов – 0,8-0,9 кВт. Для Московской области поправки не нужны. Однако как для Подмосковья, так и для других регионов рекомендуется оставлять запас мощности в 15% (умножив расчетные значения на 1,15).
Существуют и более профессиональные методы оценки, описанные далее, но для грубой оценки и удобства вполне достаточно и этого способа. Радиаторы могут оказаться чуть более мощными, чем минимальная норма, однако при этом качество отопительной системы лишь возрастет: будет возможна более точная настройка температуры и низкотемпературный режим отопления.
Полная формула точного расчета
Подробная формула позволяет учесть все возможные варианты потери тепла и особенности помещения.
Q = 1000 Вт/м2*S*k1*k2*k3…*k10,
- где Q – показатель теплоотдачи;
- S – общая площадь помещения;
- k1-k10 – коэффициенты, учитывающие теплопотери и особенности установки радиаторов.
Показать значения коэффициентов k1-k10
k1 – к-во внешних стен в помещения (стен, граничащих с улицей):
- одна – k1=1,0;
- две – k1=1,2;
- три – k1-1,3.
k2 – ориентация помещения (солнечная или теневая сторона):
- север, северо-восток или восток – k2=1,1;
- юг, юго-запад или запад – k2=1,0.
k3 – коэффициент теплоизоляции стен помещения:
- простые, не утепленные стены – 1,17;
- кладка в 2 кирпича или легкое утепление – 1,0;
- высококачественная расчетная теплоизоляция – 0,85.
k4 – подробный учет климатических условий локации (уличная температура воздуха в самую холодную неделю зимы):
- -35°С и менее – 1,4;
- от -25°С до -34°С – 1,25;
- от -20°С до -24°С – 1,2;
- от -15°С до -19°С – 1,1;
- от -10°С до -14°С – 0,9;
- не холоднее, чем -10°С – 0,7.
k5 – коэффициент, учитывающий высоту потолка:
- до 2,7 м – 1,0;
- 2,8 — 3,0 м – 1,02;
- 3,1 — 3,9 м – 1,08;
- 4 м и более – 1,15.
k6 – коэффициент, учитывающий теплопотери потолка (что находится над потолком):
- холодное, неотапливаемое помещение/чердак – 1,0;
- утепленный чердак/мансарда – 0,9;
- отапливаемое жилое помещение – 0,8.
k7 – учет теплопотерь окон (тип и к-во стеклопакетов):
-
обычные (в том числе и деревянные) двойные окна – 1,17;
- окна с двойным стеклопакетом (2 воздушные камеры) – 1,0;
- двойной стеклопакет с аргоновым заполнением или тройной стеклопакет (3 воздушные камеры) – 0,85.
k8 – учет суммарной площади остекления (суммарная площадь окон : площадь помещения):
- менее 0,1 – k8 = 0,8;
- 0,11-0,2 – k8 = 0,9;
- 0,21-0,3 – k8 = 1,0;
- 0,31-0,4 – k8 = 1,05;
- 0,41-0,5 – k8 = 1,15.
k9 – учет способа подключения радиаторов:
- диагональный, где подача сверху, обратка снизу – 1,0;
- односторонний, где подача сверху, обратка снизу – 1,03;
- двухсторонний нижний, где и подача, и обратка снизу – 1,1;
- диагональный, где подача снизу, обратка сверху – 1,2;
- односторонний, где подача снизу, обратка сверху – 1,28;
- односторонний нижний, где и подача, и обратка снизу – 1,28.
k10 – учет расположения батареи и наличия экрана:
- практически не прикрыт подоконником, не прикрыт экраном – 0,9;
- прикрыт подоконником или выступом стены – 1,0;
- прикрыт декоративным кожухом только снаружи – 1,05;
- полностью закрыт экраном – 1,15.
После определения значений всех коэффициентов и подстановки их в формулу, можно посчитать максимально надежный уровень мощности радиаторов. Для большего удобства ниже находится калькулятор, где можно рассчитать те же самые значения быстро выбрав соответствующие исходные данные.
Реальная теплоотдача секции радиатора
Как уже указывалось, мощность (теплоотдача) радиаторов обязательно указывается в их техническом паспорте. Но почему же спустя несколько недель после установки отопительной системы (а то и раньше) вдруг оказывается, что вроде бы и котёл греет как надо, и батареи установлены по всем правилам, а в доме холодно? Причин снижения реальной теплоотдачи радиаторов может быть несколько.
Чугунный радиатор Viadrus (Чехия)
Приведем показатели поверхности нагрева и заявленной теплоотдачи для наиболее распространённых моделей чугунных радиаторов. Эти цифры в дальнейшем понадобятся нам для примеров расчёта реальной мощности секции радиатора.
Как уже сказано, при использовании таких радиаторов для средне-, низкотемпературных систем отопления (например, 55/45 или 70/55) теплоотдача чугунного радиатора отопления будет меньше заявленного в паспорте. Поэтому чтобы не ошибиться с количеством секций, его фактическую мощность нужно пересчитывать по формуле:
К — коэффициент теплопередачи;
F — площадь поверхности нагрева;
∆ t — температурный напор °С (0,5 х ( t вх. + tвых. ) — tвн .);
tвх – температура входящей в радиатор воды,
tвых – температура воды на выходе из радиатора;
tвн .- средняя температура воздуха в помещении.
При температуре входящего теплоносителя 90 гр. выходящего 70 гр. а температуры в комнате 20 гр.
∆ t = 0,5 х (90 + 70) – 20 = 60
Коэффициент К для наиболее распространённых чугунных радиаторов можно посмотреть здесь:
Даже реальная теплоотдача одной секции среднего чугунного радиатора с площадью 0,299 кв. м (М-140-АО) при температуре входящей воды 90 гр. а выходящей — 70 гр будет отличаться от заявленной. Это происходит из-за теплопотерь в подводящих трубах, и по другим причинам (например, сниженный напор), предусмотреть которые в лабораторных условиях невозможно.
Итак, теплоотдача секции площадью 0,299 кв. м. при температуре 90/70 составит:
Учитывая, что теплоотдача всегда указывается с некоторым запасом, умножим эту цифру на 1,3 (этот коэффициент используется для большинства чугунных радиаторов) и получаем: 125,58 х 1,3 = 163, 254 Вт – в сравнении с заявленной 175 Вт.
Еще больше будет разницы в цифрах, если входящая в радиатор вода не нагревается выше 70 град. (а выходящий теплоноситель, соответственно, остывает до 60-50 град.), поэтому перед тем как покупать новые радиаторы, желательно узнать реальные тепловые параметры своей отопительной системы.
Как сэкономить на отоплении?
Первое правило разумной экономии – это запомнить, на чём экономить нив коем случае нельзя! Радиаторы всегда нужно брать с запасом, ведь снизить температуру в помещении можно с помощью уменьшения температуры воды в системе или с помощью запорных кранов. А вот если реальная теплоотдача окажется ниже заявленной производителем – в комнатах будет в лучшем случае прохладно. Кстати, неплохие по большинству параметров чугунные радиаторы Коннер в условиях реальной эксплуатации имеют теплоотдачу процентов на 20-25 ниже, чем указано в паспорте
Радиатор 1К60П-500 (Минск)
Как уже указывалось, теплоотдача может отличаться от заявленной и из-за того, что температура воды в отопительной системе гораздо ниже «стандартной», то есть той, при которой проводились заводские испытания, так как заявленная мощность излучения достижима лишь при лабораторных условиях. Представьте себе, что секция радиатора МС-140 (указана мощность 160 Вт) при температуре воды 60/50 град. (а больше «котёл не тянет»!) будет выдавать мощность не более 50 Вт. И если вы поверили техническому паспорту и решили поставить 5 отопительных секций, то вместо 800 Вт (160 х 5) вы получите всего 250.
Однако предусмотреть эту ситуацию и даже воспользоваться ею вполне возможно! Исходя из расчётов, приведённых выше, чем ниже ∆ t (то есть температура воды-теплоносителя), тем тем большей должна быть излучающая поверхность радиатора. Так при ∆ t 60 для излучения 1 кВт достаточно радиатора высотой 0,5 м х 0,520 м, а при ∆ t 30 — 0,5 м х 1,32 м.
«Традиционный» чугунный радиатор МС-140М2
Однако именно за счёт низкой температуры носителя и увеличения излучающей площади радиатора или количества секций можно снизить расходы на отопление.
Расчет количества секций радиаторов отопления
Здесь вы узнаете:
Проектирование отопительной системы включает в себя такой важный этап, как расчет радиаторов отопления по площади через калькулятор или вручную. Он помогает вычислить количество секций, необходимых для обогрева той или иной комнаты. Берутся самые разные параметры, начиная от площади помещений и заканчивая характеристиками утепления. От правильности произведенных расчетов будет зависеть:
- равномерность обогрева комнат;
- комфортная температура в спальнях;
- отсутствие холодных мест в домовладении.
Давайте разберемся, как производится расчет радиаторов отопления и что учитывается в вычислениях.
Виды теплообменников
Радиатор отопления — устройство, состоит из секций объединённых в единый прибор, по которым движется нагретый теплоноситель — чаще вода. Отсек — элемент батареи, обычно литая двухтрубчатая конструкция, способный излучать тепло, которое передаётся окружающему воздуху, что позволяет создавать комфортную атмосферу в квартире.
По своей конструкции приборы отопления бывают: панельные и секционные. Встречаются так же регистры — трубчатое изделие с большим диаметром, или фигурный змеевик (полотенцесушитель в ванной), они врезаются в систему.
Обогревательные приборы бывают: стальные, чугунные, алюминиевые, медные. Чугунные изделия, которые мы привыкли видеть в наших домах, нуждаются в окраске, для придания хорошего внешнего вида.
Чугунные
Изделия из чугуна — самые распространённые, у них простая форма и дизайн. Они бывают навесные и на ножках.
Изготавливаются путём литья. Это массивные конструкции, долго хранящие тепло, в плане эксплуатации они наиболее выгодные.
Плюсы:
- хорошо передают тепло;
- устойчивы к коррозии;
- долговечны, служат не менее 30 лет;
- не привередливы к качеству воды.
Минусы:
- тяжёлые, сложны в установке;
- плохой дизайн.
Стальные
Теплообменники из стали бывают панельными и трубчатыми.
Панельные модели изготавливаются из металла толщиной 1,5 мм, поэтому обладают небольшой тепловой ёмкостью. Это качество позволяет быстро производить регулировку температуры. Они эффективны в работе, их КПД достигает 75%. К плюсам так же относится не высокая стоимость и простая эксплуатация. Недостаток — плохая устойчивость к коррозии.
Трубчатые разновидности имеют все плюсы панельного типа, но в отличие от них, обладают большим уровнем давления 9 — 16 бар, у первых 7 — 9. А тепломощность (120 — 1600 Вт), и нагрев воды (120), у обеих моделей равный.
Алюминиевые
Теплообменники из алюминия рекомендованы для частных строений с автономным теплоснабжением. Для использования в централизованном отоплении эта модель не предназначена, так как подвержена воздействию не качественного теплоносителя. На российском рынке представлена компанией «Рифара».
Алюминиевые батареи бывают литыми и экструзионными:
- литые — имеют несколько отсеков, они прочные, с более толстыми стенками и широкими каналами для воды;
- экструзионные — по технологии производства, прибор выдавливается из алюминиевого сплава механическим путём, получается цельное изделие, при этом, число отсеков увеличить нельзя.
Все батареи из алюминия обладают высокой тепловой отдачей, они лёгкие и простые в монтаже. Внешне смотрятся презентабельно. По показателям давления и температурного уровня, их можно приравнять к стальным изделиям.
Биметаллические
Биметаллический теплообменник — трубчатый стальной сердечник и алюминиевый корпус. Он прочный и надёжный, способный выдерживать высокое давление. Несмотря на низкую инертность, имеет повышенную теплоотдачу, при небольшом расходе воды. Внешне выглядит презентабельно, и в уходе не сложен.
Основной минус — высокая цена.
Медные
Медь, для изготовления теплообменников используется давно, но широкое применение такие модели получили недавно. Так как, для обогревательных систем требуется рафинированный вид меди, а по новым технологиям его производство стало недорогим.
При одинаковых технических показателях с другими моделями, они весят меньше, а теплоотдача выше. Данное свойство существенно снижает затраты на электричество.
Медь имеет повышенную механическую прочность, поэтому трубы можно использовать в сочетании с водой нагретой до 150 градусов, при давлении 16 атмосфер.
Параметры влияющие на результат расчёта
Как уже было сказано, паспортная теплоотдача одного элемента, заявленная производителем в прилагаемом паспорте на продукцию, рассчитана на оптимальные условия комнаты. Отсюда устанавливают стандартное количество необходимых сегментов батареи для того, чтобы можно было полноценно отапливать один квадратный метр помещения.
Расчёт секций радиатора. Как рассчитать секции в радиаторе отопления. Батарея.
Watch this video on YouTube
Комнаты, как в квартире, так и частном доме имеют свои специфические особенности условий отопления. Параметры помещений могут существенно отличаться от стандартных значений.
Эффективный и профессионально-точный подсчёт количества обогревательных элементов в биметаллических батареях могут произвести только специалисты-теплотехники. При расчёте они учитывают большое количество параметров, влияющих на конечный результат изысканий.
Чтобы не утомлять читателя специфическими тонкостями профессионального подхода в этом вопросе, остановим внимание на основных данных необходимых для точного подсчёта сегментов биметаллических батарей отопления – это:
- материал, из которого возведены стены;
- толщина ограждающих конструкций;
- средняя температура окружающей среды в зимний период;
- тип оконных переплётов (двойные деревянные рамы, двойные или тройные стеклопакеты);
- наличие отапливаемого или холодного помещения над комнатой;
- количество холодных ограждений;
- площадь комнаты;
- высота потолка.
Под каждый параметр подбирают корректирующий коэффициент. Выше указаны наиболее употребляемые 7 коэффициентов.